翻訳と辞書
Words near each other
・ Voltaïc
・ Volta–Congo languages
・ Volta–Niger languages
・ VoltDB
・ VoLTE
・ Volte
・ Volte-face
・ Voltea pa' que te enamores
・ Voltea pa' que te enamores (2015 telenovela)
・ Voltech Instruments
・ Volter Kilpi
・ Volterra
・ Volterra (crater)
・ Volterra (disambiguation)
・ Volterra Cathedral
Volterra integral equation
・ Volterra lattice
・ Volterra operator
・ Volterra Semiconductor
・ Volterra series
・ Volterra space
・ Volterra's function
・ Volterrano
・ Volterrano (disambiguation)
・ Voltes St Asteria
・ Voltex Light Bar Company
・ Volthe
・ Volti
・ Voltido
・ Voltige


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Volterra integral equation : ウィキペディア英語版
Volterra integral equation
In mathematics, the Volterra integral equations are a special type of integral equations. They are divided into two groups referred to as the first and the second kind.
A linear Volterra equation of the first kind is
: f(t) = \int_a^t K(t,s)\,x(s)\,ds
where ''ƒ'' is a given function and ''x'' is an unknown function to be solved for. A linear Volterra equation of the second kind is
: x(t) = f(t) + \int_a^t K(t,s)x(s)\,ds.
In operator theory, and in Fredholm theory, the corresponding equations are called the Volterra operator.
A linear Volterra integral equation is a convolution equation if
: x(t) = f(t) + \int_^t K(t-s)x(s)\,ds.
The function K in the integral is often called the kernel.
Such equations can be analysed and solved by means of Laplace transform techniques.
The Volterra integral equations were introduced by Vito Volterra and then studied by Traian Lalescu in his 1908 thesis, ''Sur les équations de Volterra'', written under the direction of Émile Picard. In 1911, Lalescu wrote the first book ever on integral equations.
Volterra integral equations find application in demography, the study of viscoelastic materials,
and in insurance mathematics through the renewal equation.
==References==

*Traian Lalescu, ''Introduction à la théorie des équations intégrales. Avec une préface de É. Picard'', Paris: A. Hermann et Fils, 1912. VII + 152 pp.
*
*
*
*(Integral Equations: Exact Solutions ) at EqWorld: The World of Mathematical Equations
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Volterra integral equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.